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I. Introduction. In accordance with the representation constructed in [I, 2], the 
ordered rotation of the particles of a suspension under the influence of an external field 
leads to intensification of transport processes in the suspension. Since macroscopic motion 
of the suspension may be absent in this case, this intensification may appear to the observer 
to be the result of diffusion. In fact, the macroscopic effects are due to vortical flows 
around rotating particles. These flows act in a manner similar to a huge number of micro- 
scopic "agitators." Here, as regards diffusion phenomena, the suspension becomes anisotropic. 
The anisotropy is determined by the axial velocity vector of the internal rotation m = wv. 
Thus, the effective thermal conductivity [i] 

~ i t ~  0 ' ' ' 

The coefficients of effective thermal conductivity I i' in (i.i), measured in units of the 
thermal conductivity of the carrier fluid 12 o , are found from dimensional analysis to be 
functions of the dimensionless parameters 

N ^ q ' ~, S ~•215 A~=~1,/L~' Pe.~-(oa-,'• 

where a, ~, Ii ~ and ~i are the size, concentration, thermal conductivity, and diffusivity 
of the particles; <2 is the diffusivity of the carrier fluid; Pe 2 is the thermal Peclet num- 
ber, characterizing the ratio of the rates of convective and conductive heat transfer in 

' = 11 '(~i~ A, S, the fluid on the scale of the particles. Meanwhile, I o ' = 10'(q~ , A), 11, 2 ,2 , 
Pe2). 

Due to the analogy between the heat-transfer and diffusion equations of a neutral impur- 
ity, the result for the latter is obtained as a special case with Ii ~ = 0. Thus, regarding 

! thermal conductivity, the relative values 11, 2 are numerically equal to the relative diffu- 
' The diffusion coefficients were calculated by the cellular method sion coefficient DI, 2 . 

in e( ' = (I/2)ql/3pe, D2,th_ 3/4)~2/3Pe 2.1imit~' Pe 2 m 1 in [2], where it was found that (Pc = u~2/D), D I 

A similar calculation for thermal conductivity was performed in [3]. However, the dif- 
ference from diffusion connected with the permeability of the particles was not manifest 
in the first approximation for Pe 2 and ~i/3 in this study. The calculation of thermal con- 
ductivity in [4] was also limited to small values of Pe 2. Here, we obtain coefficients of 
effective thermal conductivity for a suspension which as a whole is at rest but in which 
internal rotation is taking place. The study is conducted for large concentrations and arbi- 
trary parameters A and S in the range of Peclet numbers from 0 to I03. The results are com- 
pared with experimental findings [5]. 

2. Tensor of Effective Thermal Conductivity. Let us state the premises of the variant 
of the cellular method we will be using. We will also prove the validity of Eq. (i.i), link- 
ing the thermal symmetry of the medium with the symmetry of transport in the neighborhood 
of a particle. In constructing cellular models of media with randomly-distributed occlusions, 
investigators frequently replace the random distribution by an ordered distribution [6] to 
permit the use of periodicity conditions on the external surface of a cell. We will employ 
a different approach. Considering that macroscopic effects are produced only by the regular 
component of the hydrodynamic and temperature field in the neighborhood of a particle and 
that a random particle distribution means that this component can be determined by the regu- 
lar characteristics of the process (the rate of ordered rotation (,) and the macroscopic tem- 
perature gradient (~ = G~), we assign the temperature profile in the particle and the surroun- 
ding fluid by means of the relation (i = i, 2) 
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The subscripts 1 and 2 pertain the particle and the fluid, respectively; U, F, and $ are 
unknown functions of the distance r from the center of the particle. It is considered that 
when the temperature gradient and angular velocity are colinear, rotation does not disturb 
the temperature. The latter is given by the expression t i = Ui(r)(g'r) (i = i, 2). Thus, 
in relation to the particle we have isolated for examination, the suspension can be thought 
of as a homogeneous isotropic medium~ In accordance with this, a unit cell can be regarded 
as a sphere having the radius R =~-i/3 a and the volume V 0. This volume is equal to the volume 
of the suspension calculated per particle. 

Let us change over to dimensionless quantities. To do this, we introduce the scale 
of distance a (particle radius) and temperature at = Ga. We assume that the observed heat 
flux is equal to the cell-averaged local value q. With allowance for v'q = 0, 

<qi,> = V - 1 ~ q t ,  d V -  --- V- l~O(v ,q~) /O:c tdV.  ( 2 . 2 )  

The u n i t  o f  measurement  o f  h e a t  f l u x  i s  t a~  In  t h e  p a r t i c l e  and t h e  f l u i d  

(c  and P a r e  h e a t  c a p a c i t y  and d e n s i t y ;  v i s  v e l o c i t y ) ,  Changing o v e r  in  ( 2 . 2 )  t o  i n t e g r a -  
t i o n  o v e r  t h e  s u r f a c e  and c o n s i d e r i n g  t h a t  no f l u i d  f l o w  o c c u r s  e i t h e r  t h r o u g h  t h e  s u r f a c e  
o f  t h e  p a r t i c l e  o r  t h r o u g h  t h e  s u r f a c e Z  and t h e  volumeV - and a l s o  k e e p i n g  in  mind t h a t  t h e  
no rma l  component  o f  t h e  h e a t  f l u x  i s  c o n t i n u o u s  - w e  o b t a i n  

<ql~> --  - -  V -1 f x,, (Ot~./Ox~) ni dZ.  ( 2 . 4 )  

Inserting temperature distribution (2.1) into (2.4) and considering that <nink> = 6ik/3 , 
we find the cell-averaged heat flux in the form <qi > = -lik'gk, where the tensor Ilk' is 
determined from Eq. (i.I) 

+ F 2 (R) (U' = dU/dr  . . . ) .  

The coefficients of effectivethermal conductivity are expressed through the values 
of the functions F, U, and ~ and their derivatives on E. 

3. Calculation of the Coefficients of Effective Thermal Conductivity. Equation (2.3) 
was obtained on the assumption that the observed temperature gradient is assigned. This 

# imposes the condition V -I t~ndE = g on profile (2.1). 

By virtue of the random distribution of particles in the volume, satisfying this con- 
dition, the regular part of the temperature on Z 

t~(R) = g . K  ( 3 . 1 )  

The equation of heat transfer in the cell has the form 

v~'v/~--  Pe~lV2t~ (i ~ 1,2). ( 3 . 2 )  

Here, velocity is measured in the units ~a; Pe i = ~ai/~i . Since heat convection does not 
play a role in such a small volume, the velocity v~ is assumed to be constant. For velocity, 
we adopt a Stokes profile between rotating and stationary spheres, since the velocity of 
the fluid is extinguished by the surrounding particles at the distance ~R: 

vi  ~ / i ( r ) w  X r , / 1  = t , / 2  := ( r-3 - -  ~)/(1 --  ~). ( 3 . 3 )  

As i s  known [ 7 ] ,  Eq. ( 3 . 3 )  i s  v a l i d  f o r  v2 o n l y  f o r  s m a l l  Reyno lds  numbers  (Re = m a i / v i ,  
v 2 is the kinematic viscosity of the fluid). Introducing the Prandtl number Pr = Va/K2) 
we write Pe 2 = RePr. It follows from this that the restriction on the Reynolds number (Re < 
i) leads to a restriction on the Pec!et numbers (Pe a < Pr). For typical fluids (v 2 = 10 -s- 
i0-6 mi/sec, ~2 = 10-7 mi/sec), this number should not exceed i0-i0 2. 
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We obtain the equations for the unknown functions after inserting (2.1) and (3.3) into 
( 3 . 2 ) :  

UT-V(4!r)UT=O, FT+(i!r)F{=--Ped~(,-)q;,, o 7 - P ( . ~ / , - ) r  = Pej~( , ' ) (&+ U0. ( 3 . 4 )  

Along with condition (3.1) on 7, at the center and on the surface of the particle we have 
t~(0) ~ ~, tL(1) = ti(1), t~'(1) = A-~t~'(1). This leads to the following (r = F, #, U): 

~,r I, = o 7-  cr U2 (/7) = t, Fe (/7) == q), (/7) = 0, ~, (t) = ~ (1), ( 3 . 5 )  

+ , . ; i ) , = ,  = + .... , .  

The f i r s t  e q u a t i o n  o f  ( 3 . 4 )  i s  s o l v e d  s e p a r a t e l y :  

Ui = C~t -~ Ci~/r a (i = 1, 2). ( 3 . 6 )  

H e r e ,  C ~  = 3 / ( A  + 2 + r ( 1  - A ) ) ;  C== = (1  - A ) / ( A  + 2 + r  -- g ) ) ;  C2~ = 0 ;  C~= = (A + 
2 ) / ( k  + 2 +~- (1  -- A ) ) .  The f u n c t i o n s  F and  @ a r e  s o u g h t  i n  t h e  f o r m  o f  power  s e r i e s .  I n s i d e  
the particle, satisfying the condition at zero, we obtain expansions that are accurate to 
within the two arbitrary constants ~0 and ~2: 

Cl)l ~- O:OQI)lO "~- ~2Q~)12, F1 = --CII i-~ a 2 F l o  aoF12 , (3.7) 

where ~,o = ~ aU "<~::~-~); 'D~ = ~ bca-~-~; 
h : : i  1", = : t  

= .lotpo  E ; . . . .  Z (4s  - -,,,. , 
i~::=l h=l 

while the following recursion formulas exist: 

~ (~) = (m + 2) (~ + ~), ~ (~) = ~ (n~) ~ (~ + 2). 

Outside the particle, we introduce the variable x = R/r - i. This allows us to avoid nega- 
tive powers of r and to satisfy the condition on Z. We write 

1.=I h ~ l  

After insertion of (3.8) into (3.6) 

A i==A;, &=A,I3§ C~_m)/=, A , = ~ D ( B , §  - -  

oC,~, D, A 7 A~ D (3C,2 B,~.5, A~ (7/30) (B~ ~ .~ = (D/20) (C,~ - -  ~ . . . . .  
A s (217D,'560)(3C~2 - -  B~) - -  3 D i A v : l l 2 0 ,  B 2 = B~, 

Ba = B ( 3 ,  B~ = - - D A J 4 ,  B 5 = DA~/5 ,  D = P%Tt/a/(I - -  q~), 
B~r == --[(7~ d- 1)(k -~ 2)]-~[Mk(~3) @ DL~JA)]  (k ~ 4), 
-~17:+2 -- [(k -i- 'l)(/~ --~ 2)I-~[M~(A) - DL,~(B)] (k ~ 7), 
=~[,<(/D - -  (i,: - 2)(,~ - 5 ) / L _ ~  -I-  2(I~ - I ) (21 :  - 5 )B , , _~  + 

~- O]e (k - -  2 ) B ~  -> 2 (k q- 1 ) ( 2 k  - -  t)B,,r ,-1, 

Lh(A) == 3AI~-1 ~ 3Aft_2 q- A~-a. 

A l l  A k and  B k a r e  d e t e r m i n e d  t h r o u g h  A z and  B 1. T h u s ,  i n t r o d u c t i n g  t h e  n o t a t i o n  F 2 = F i ( A 1 ,  
B z ) ,  $2 = ~2(A1,  B 1 ) ,  we f i n d  ~2 = @20 + A~O2~ + B~Oz~, F :  = F i0  + A~Fi~ + B~F~2. H e r e  ( a s  
w e l l  a s  f o r  F ) ,  r  = ~ : ( 0 ,  0 ) ,  ~ = ~ : ( 1 ,  0)  - ~ ( 0 ,  0 ) ,  ~ :~  = ~ ( 0 ,  1) - ~ ( 0 ,  0 ) .  

Consequently, the sought functions are determined to within four unknowns: ~0, ~, 
A~, and B~. For these unknowns, we obtain the following algebraic system after we insert 
(3.7) and (3.4) into the boundary conditions for the particle surface (3.6) 
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A,7,!L, = D i ,  ( 3 . 9 )  

where y = (s 0, ~2, Ai, Bi); 

A.--- 

1) = (~'4,,, i:~,> -!- c : , ,  ( % 0  - 

( 1 ) ~ .  ([)J~ -- @21 

- -  1~'1~_ /"~n - -  F:,t 

- - z , ; ,  z , , o -  k - ( z , ' . . . ,  - 

c,, + - Re,';o)/a); 

-e ,7 i 

The first subscript of Aik is the row number. The values of the functions and their deriva- 
tives in A and D are taken on the particle surface. 

In accordance with (2.6), (3.5), (3.6), and (3.8), the coefficients of thermal conduc- 
tivity are calculated from the formulas 

t 

. . . .  3~(.~ ' " .~ . . . .  ~I~=o  = - ~ ,  ( 3 . 1 o )  
t r 

1 , 2  = - -  (D~ lx=~ = - -  A 1. 

The first of these formulas was determined in explicit form, while the others are found from 
the solution of system (3.9). The result for 10' repeats the familiar Maxwell formula. 

4. Analysis of the Results. Actual media in which transport occurs by internal rota- 
tion are magnetic suspensions and colloids (magnetic fluids). First of all, it should be 
noted that the condition Pe 2 = 1 - which can be used to evaluate the possibility of observing 
the rotation effect - requires fairly coarse particles (-i0 Dm) when allowance is made for 
the usual values ~ = 102-104 sec -I and the value of diffusivity ~2 = 10-7 m2/sec that is 
typical of fluids. Suspensions of this size contain individual particles, while magnetic 
fluids should contain the corresponding size of aggregate. Such formations have been ob- 
served repeatedly (see [8], for example). We will examine three specific objects: suspen- 
sions of iron particles, magnetite particles, and impermeable particles (diffusion) in an 
organic liquid (kerosene). We will also examine a colloid of magnetite in kerosene. The 
coefficients of thermal conductivity and diffusivities used for kerosene, magnetite, and 
iron were respectively equal to I = 0.13, 6.26, and 126 W/(m-K); K = 0.76"10 -7 , 0.21"10 -5 , 
and 0.47"10 -4 m2/sec. For the carrier and magnetite, we also need p = 0.82"103 and 5"103 
kg/m 3 and c = 2.09 and 0.57 kJ/(kg'K). In the graphs, lines 1-4 corresond to particles of 
iron and magnetite, magnetite aggregates, and the impermeable particles. 

Let us first discuss the behavior of the coefficient I0', which with fixed properties 
of the components depends only on the concentration of the solid phase and is measured at 
a state of rest in a zero field. The relation I0'(~) is shown in Fig. i. It should be re- 
called that the values of 10' are measured in units of the thermal conductivity of the car- 
rier. 

Returning to experimental data on the concentration dependence of the thermal conduc- 
tivity of magnetite magnetic fluids [9], we find the empirical formula 10' = 1 + k~m with 
k = 4.5 for the initial section of this relation. In accordance with Eq. (3.12), we have 
10' = 1 + k'~p, k' = 3(A -- I)/(A + 2) on the linear section. Meanwhile (A = 48) k' = 2.82 
for magnetite in kerosene. The difference between k' and k can be attributed to the differ- 
ence in the concentration of the solid phase 9 from the magnetic concentration 9 m used in 
the empirical relation in [9]. This difference, in turn, exists because of the presence 
on the particles of a nonmagnetic surface layer [i0] with a thickness on the order of the 
lattice constant 8 = 8.10 -4 ~m. This layer forms with the chemical deposition of a surface- 
active substance (surfactant). Taking the mean radius of the magnetic core of the particle 
R to be equal to 5"i0 -a ~m, we find 9 =gm(l + 6/R) 3 = 1.56~m. From this, k = k'9/9 m = 4.4, 
which agrees with the experimental data to within 2%. The points in Fig. 1 show the data 
in [9] for magnetite in kerosene recalculated with the use of the above relation between 

and ~m" 

We begin our examination of transport by internal rotation with an analysis of an experi 
ment involving intensification of heat transfer through a magnetic fluid rotating about the 
axis of a cylindrical layer under the influence of a transverse magnetic field [5]. In this 
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geometry, g.W = 0, and the measured increment of the coefficient of effective thermal conduc- 
tivity is numerically equal to 12 ' Since (as noted above) a marked increase in heat trans- 
fer in a magnetic fluid due to rotation is possible only in the presence of aggregates, it 
is necessary to evaluate the thermophysical properties of the latter. The magnetic concentra 
tion of particles in the test specimen was 0.06, so the concentration of the solid phase 
was 0.094. The fraction of the volume occupied by the aggregates was equal to the hydrodynam- 
ic concentration -- including the volume occupied by surfactant layers. The hydrodynamic 
concentration is usually evaluated from the increment of the effective viscosity of the mag- 
netic fluid in the field. However, such estimates yield very conflicting results, since 
this increment also depends to a significant extent on the form of the particles (aggregates) 

- which is usually unknown. We will determine it from the formula ~h = ~(i + 61/RI) 3, where 
61 is the length of a surfactant molecule. It is equal to 2"10 -3 pm for oleic acid. The 
quantity R I in the formula is the radius of the particle. Taking R I = 5-10 -3 pm and ~ = 
0.094, we obtain ~h = 0.25. In the present case, the volume fraction of particles in aggre- 
gates ~' = ~/~h = 0.38. Using this value, we find from Eq. (3.10) for the thermal conduc- 
tivity of the aggregate 11 ~ = 2.712 ~ (12 ~ is the thermal conductivity of kerosene), i.e., 
A = 2.7. Calculating the heat capacity of a unit volume of aggregate from the formula c' = 
pbq~'Cb + pf(l -~')cf, we also obtain an estimate for its diffusivity K I = ll~ ' = 1.6"i0 -7 
m2/sec. Then S = <i/<2 = 2.1. Figure 2 shows coefficients 11 ' and 12 ' calculated with 
A = 2.7, S = 2.1, and ~ = 0.25 and referred to the thermal conductivity of the colloid I o ' = 
1.29. For comparison, we take the data in [5] in a Maxwell field (H = 1500 Oe), when the 
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aggregates are least subject to hydrodynamic disintegration and are nearly completely stopped 
by the field. Here they rotate inside the fluid with the empirically measured rate of rota- 
tion of the layer. We have a single undetermined parameter - the size of an aggregate a - 
to establish agreement between theory and experiment. Agreement is obtained with a choice 
of e = ii0 Dm. Data from [5] recalculated in accordance with this value is shown by the 
points in Fig. 2. The agreement between theory and experiment is very good. We should point 
out the qualitative aspect of the relation: %2' increases quadratically on the initial sec- 
tion and then slows, with the increase becoming close to linear. As regards the quantita- 
tive value of I, it may be overstated due to the nonspherical form of aggregates stretched 
out by the field. In accordance with Fig. 2, the increase in 11 ' with Pe 2 is at first linear 
and then also slows. 

These relations are shown in Fig. 3a, b in a logarithmic scale within a broader range 
of Pe 2 for ~ = 0.25. The calculations were performed up to Pe 2 = 103 . At large values of 
Pe2, the series for the functions ~2 and F 2 diverge. It should be recalled that such large 
values of Pe 2 exceed the earlier-indicated boundary connected with the use of the Stokes 
profile for flow in a microscopic eddy. The coefficients 11'/I o ' and 12'/I 0 are greater 
for particles with a lower thermal conductivity. Meanwhile, we have an approximate equality 
(in order of magnitude) 11 '2 = 12 ' It is interesting that the functions 11'(Pe 2) and 
12'(Pe 2) become nonmonotonic for large values of Pe 2. This is difficult to explain, but 
such behavior persists with an increase in the number of terms in the series and doubling 
of the accuracy of the entire computation. The problem of the divergence of the series for 
F 2 and ~2 also arises for low concentrations. As a result, the concentration dependence 
of the coefficients 11 ' and 12 ' was calculated only for ~ e 0.2. The results are shown in 
Fig. 4a, b (curves i, 3, and 4 for Pe 2 = i00, 15, and i0). The calculations were performed 
up to ~ = i. However, they lose meaning (as indicated by the dotted lines) as a dense pack- 
ing is approached. The dashed lines show the results of extrapolation to the region of low 
concentrations. It can be seen that the character of the relations is to a large extent 
determined by the relationship between the thermophysical properties of the fluid and particles. 
Thus, the relation ll'/l 0' = f(~), increasing monotonically with q for the impermeable par- 
ticles, acquires a gentler slope for a suspension with a fluid and particles having roughly 
the same thermophysical characteristics (aggregated magnetic fluid). The relation exhibits 
a fairly sharp maximum in the neighborhood ~ = 0.25, when the thermal conductivity of the 
particles is considerably greater than the thermal conductivity of the carrier fluid. The 
relation 12'/I 0' = f(~) is monotonic in character when the thermophysical properties of the 
particles and fluid are the same; the maximum appears when the thermal conductivity of the 
particles deviates from that of the fluid in either direction. 

LITERATURE CITED 

i. V. G. Bashtovoi, A. N. Vislovich, and B. E. Kashevskii, "Phenomenon of microconvective 
heat and mass transfer in fluids with internal rotation," PMTF, No. 3 (1978). 

2. A. O. Tsebers, "Some features of transport phenomena in suspensions with internal rota- 
tion," Prikl. Mat. Mekh., 43, No. 4 (1978). 

3. M. A. Martzenyk and V. I. Thernatinskii, "Transverse heat transport in ferrofluid in 
rotating magnetic field," IEEE Trans. Magn., MAG-16 , No. 2 (1980). 

4. N. I. Ivanova, "Development of methods of studying heat and momentum transport processes 
in magnetizing fluids with internal rotation," Author's Abstract of Candidate's Dis- 
sertation, Physico-Mathematical Sciences, ITMO AN Belorussian SSR, Minsk (1986). 

5. B. E. Kashevskii and N. I. Ivanova, "Heat transfer by internal rotation in magnetic 
fluids," Magn. Gidrodin., No. 3 (1985). 

6. G. N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composites 
[in Russian], ~nergiya, Leningrad (1974). 

7. D. Joseph, Stability of the Motions of a Fluid [Russian translation], Mir, Moscow (1981). 
8. P. G. Bar'yakhtar, Yu. I. Gorobets, et al., "Hexagonal grid of cylindrical magnetic 

domains in films of a ferrofluid," Magn. Gidrodin., No. 3 (1981). 
9. G. E. Kronkalns, M. M. Maiorov, and V. E. Fertman, "Temperature dependence of the physi- 

cal properties of magnetic fluids," Magn. Gidrodin., No. 2 (1984). 
10. R. Kaiser and G. Miskolcty, "Magnetic properties of stable dispersion of subdomain mag- 

netic particles," J. Appl. Phys., 41_ , No. 3 (1970). 

633 


